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A SERIES SOLUTION FOR SOME PERIODIC ORBITS 

ACCORDING TO THE PERTURBATION METHOD 
IN THE RESTRICTED THREE-BODY PROBLEM 

by 
Su-Shu Humg 

Goddard Space Flight Center 

SUMMARY 

A ser ies  is obtained for those periodic orbits surrounding the 
more massive of the two finite bodies in the restricted three-body 
problem. The expansion is in te rms  of the mass of the less 
massive finite body. The initial conditions predicted by the ser ies  
for several  periodic orbits are compared with those obtained by 
purely numerical processes. They are in good agreement for the 
case corresponding to the earth-moon system. Also, a simple 
theory of nearly periodic orbits in the neighborhood of a periodic 
orbit is developed and numerically verified by examples. Finally, 
it is suggested that, if asteroids avoid places where their orbits 
would be commeasurable with the period of Jupiter, then artificial 
satellites and dust particles may avoid certain a reas  around the 
earth as a result  of the presence of the moon. 
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A SERIES SOLUTION FOR SOME PERIODIC ORBITS 

ACCORDING TO THE PERTURBATION METHOD 
IN THE RESTRICTED THREE-BODY PROBLEM 

by 
Su-Shu Huang 

Goddard Space Flight Center 

INTRODUCTION 

A periodic solution may be regarded as a solution of the differential equations of motion that 
satisfies, in addition to the initial conditions, the condition that after a lapse of one period, P , both 
coordinates and velocities return to their initial values. Thus, the problem of finding a periodic 
orbit in celestial mechanics resembles the problem of finding the eigen function €or an eigen 
value in quantum mechanics, since the eigen value is determined by boundary conditions. Indeed, 
it is this basic concept that led to the derivation of a ser ies  solution for those periodic orbits in 
the restricted three-body problem that a r e  revolving around the more massive of the two finite 
mass  points. The recent papers by Szebehely give a detailed discussion of the restricted three- 
body problem (References 1 and 2). 

The mathematical method used here follows the standard technique employed in classical 
mechanics under these circumstances. Indeed, i t  is very similar to the method Hill used in his 
lunar theory (References 3 and 4; also see Reference 5). Actually, the present analysis is some- 
what parallel to the analysis that led Hill  to his variation orbit, for both his and the present 
method depend upon some ser ies  expansions. However, in his lunar theory Hill  expanded the 
solution in te rms  of the ratio of the mean motion of the sun to that of the moon in the rotating 
coordinate system. In this present theory for artificial satellites orbiting the earth in the earth- 
moon system the solution is expanded in te rms  of the mass of the moon. The mathematical s im- 
plicity in terms of the lunar mass  is obvious; however, the result  cannot be applied to the study 
of the motion of the moon because the moon is revolving around a relatively much less  massive 
body (i.e., the earth) in the earth-sun system; consequently, it is senseless to expand the solution 
in t e rms  of the solar mass. 

EQUATIONS OF MOTION 

The total mass  of the two finite bodies is considered the unit of mass, and their separation 
the unit of length. The unit of time is such that the gravitational constant is unity. If we adopt 
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the line joining the two finite mass  points as the x-axis and the location of the greater of these 
masses  as the origin, the equations of motion of the third, infinitesimal body in this rotating 
system of reference become: 

where it is assumed that the mass 1 - p  is at  the origin. Consequently the mass p is at point 
(1, 0). Also, r1) and rz) are the distances of the third body from the 1 - p and p components, 
respectively. It is obvious that r I ’  is also the distance of the third body from the origin; so 

rl‘  = r . (3 

We are interested in the periodic orbits revolving around the 1 - p  component. Therefore, we 
make the transformations 

x = r c o s B  , 

y = r s i n B  . 

This brings Equations 1 and 2 into the forms 

EQUATIONS OF PERTURBATION 

When p equals zero all c i rc les  with their center a t  the origin are the periodic solutions of 
the problem. We can now argue that if p is small, the periodic orbit deviates only slightly from 
a circular one. The deviation obviously depends upon p. Therefore, the periodic solutions may 
be written as 

(8 1 r = r o  t p r , ( t )  t p z r 2 ( t )  t 3 
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where ro and A are to be determined and are independent of time. Substituting Equations 8 and 9 
into Equations 6 and 7 gives equations of different orders  of approximation after a ser ies  of long 
but straightforward calculations. 

The zeroth order (PO) approximation gives 

which is simply Kepler's third law in the problem of two bodies, the 1 - p component and the third, 
infinitesimal body. The term is A f 1 instead of A because the equations are expressed in the 
rotating coordinate system. Also, A may have positive or negative values, corresponding respec- 
tively to the direct  and retrograde motion of the third body. 

The first order (pl) approximation yields 

de,  1 3 1 d Z  r ,  
- -  2 ( A + l ) r 0 = -  3 ( A + 1 ) 2 r l  = 7 r 0  + ~ r o c o s 2 A t  + g r ~ ( 9 c o s A t + l S c o s 3 A t )  , (11) 

d t  

3 3 
2 r o  s i n  2ht - g r,' ( s i n  A t  + 5 sin 3At) , 

dr 1 dZ e, 
r o  2 t 2 ( A + 1 ) =  = - -  

i f  the te rms  involving third and higher orders  of r o  a r e  neglected. 

With the same degree of approximation in regard to the ser ies  in r o ,  the second order (pz) 
equations are:  

1 1 + r ,  ( I +  3cos 2 A t )  + T r o  r l ( 9 c o s A t  t 1 5 c o s  3At) 

ro' 8 ,  
- 3r0 8, s i n  U t  - 8 (45 sin 3At + 9 s i n  At) , 

3 

and 

d r ,  de, d 2 @ 1  3 
z - 2 - - - - r l d t z - -  d t  d t  r ,  s i n  Ut - 3r, 8 ,  cos 2 A t  

1 1 
. (14) - 2 r o  r ,  ( 3  s i n  A t  + 15 s in3At)  - g r," 0 ,  (3cos A t  t 4 5 c o s  3At) 
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In a similar way equations of higher orders  can be derived in terms of the solutions of the 
equations of lower orders .  

THE FIRST ORDER EQUATIONS 

The solutions of Equations 11 and 12 can be easily found: 

2B ; 
+ A i c o s  (A + 1) t + A , ’ s i n  (A+ 1) t - -+ k ,  cos k t  + k , c o s  2 X t  + k 3 c o s  3 A t  , 

r O  

(15) r l  - 6 ( h  + 1)’ 

r,, 8, 
= 2 ,  s i n  A t  + I ,  s i n  2Xt + 1 ,  s i n  3h t  + B; t + B,’ - 2A;  s i n  ( A  + 1) t + 2A;cos ( A  + 1) t . (16) 

A;, A;, B;, andB; a r e  arbi t rary constants which make Equations 15 and 16 the most general 
solution; kn and 1 a r e  defined by 

3( 2h + 1) k ,  - 
2 h ( 3 A Z  - 2 A -  1) r o  ’ 

5( SA + 2 )  
8h(8h2 - 2h - 1) ro2 ’ k3 - 

3 (10h2 t 1% t 3) 
8hZ (2h + 1) 

1 ,  = - r , ” ,  

3(11Xz + 10h + 3) 
” 8 X 2 ( 3 h Z - 2 X - 1 )  r o  ’ 

It should be observed that A (or, equivalently, r o ) ,  which appears in Equation 10, is not an 
integration constant in the perturbed case, although i t  is in the unperturbed case. Indeed, in the 
unperturbed case h is the only integration constant that does not vanish under the assumed initial 
conditions. The integration constants in the perturbed case a r e  A;, A;, B,’, and B;. In general, 
if higher orders  of p a r e  considered, A,, 4 , B, ,  and B, are defined by 

because, as we shall see later,  the complementary functions in different orders  of approximation 
are of the same form. Consequently, the integration constants in different orders  of p can be 
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combined into four arbi t rary constants A,, 4, B,, and B, to agree with the expected number of 
four that occur in the solution of two second order differential equations (Equations 6 and 7). 

The integration constants A,, A,, and B, a r e  not particularly relevant, but it is important to 
note the dynamical meaning of B,. If A'  is the mean angular velocity in the perturbed case, 
we have, from Equations 9 and 16, 

or in general 

Therefore, B,' PI,, (or B , F 0 )  is the change in the mean angular velocity 
case to the perturbed case. Hence the four integration constants for the 

from the unperturbed 
perturbed case may be 

taken as AI, A,, A ' ,  and B, (or A,' , A; , A ' ,  and E$' in the first approximation), and X, or eqUiVa- 
lently r o  , acts  in the perturbed case as a standard for comparison with the perturbed orbits and 
is consequently a parameter. 

We can set A' = h for the sake of simplicity because both the perturbed and unperturbed 
periodic orbits form a continuous family. This leaves B,' = 0 .  

Even with B,' = 0 ,  the general solution does not give the periodic orbits because there are 
two fundamental periods %/(A + 1) and %/A, with several  harmonics of the latter. However, 
since the existence of some periodic solutions has been proved (see for example Reference l), 
these periodic orbits must correspond to the particular integral obtained from Equations 15 and 
16 by setting A,' = A; = B,' = B; = 0 .  Then the solutions contain only te rms  with period 2n/X of 
the fundamental oscillation, and shorter periods corresponding to i ts  harmonics. Thus the periodic 
orbits around the 1 - ,U component may be given, to the f i r s t  order of ,U and the second order of 
ro7 by 

e = i t  I- I 

where 

- r O  

r ,  - - 6 ( h  + 

+ k ,  COS A t  + k ,  C O S  2ht + k, cos 3At , 

r o e 1  = 1 , s i n X t  + 1, s i n 2 h t  + 1 , s i n X t  . 



It follows from the solution given by Equations 15 and 16 that, in general, a periodic solution 
can be obtained for any given value of A only by setting A,, A,, B1, and B, equal to zero.  Thus, one 
periodic orbit is associated with one value of the period. However, if  A is a ratio of two integers, 
periodic orbits may exist for arbi t rary (small) values of these constants. If they do, a large 
number of periodic orbits would be found for some particular values of the period. 

THE SECOND ORDER EQUATIONS 

When the solutions of r and ro  8, given by Equations 25 and 26 are substituted into the second 
order  equations (13 and 14) and the resulting equations are simplified, we obtain: 

dZ r, de, 
- -  2 ( A + l ) r 0  dt - 3 ( A + 1 ) 2 r 2  = p,, + pncosnAt  , 
d t  

n =  1 

d2 8 ,  
r o  7 + 2 ( A + l ) 7 3 -  d r 2  = p n s i n n A t  . 

n =  1 

These equations have the same form as Equations 11 and 12, except for more terms on the right- 
hand side. Therefore, the solution can be derived in the same manner as in the case of the f i r s t  
order equations, although finding the explicit expressions of the solutions is much more tedious 
because of the lengthy equations that define p, and p n .  The author has evaluated only Po. From 
this the average radius of the periodic orbit may be derived: 

l +  3 ( 1 9 A '  + 14A + 3) 
6 ( A  + 1)' + " [ 1 8 ( h  + 1 ) 4  32A2 (A + 1)' (3A2 - 2 h -  1) + 8A2 ( 3 A z  - 2 A  - 1 ) '  

T . 
P l +  3 ( 1 9 A '  + 14A + 3) 

<r> = r o t  - 6 ( A  + 1 ) 2  + " [ 1 8 ( h  + 1 ) 4  32A2 (A + 1)' (3A2 - 2 h -  1) + 8A2 ( 3 A z  - 2 A  - 1 ) '  

correct  to the second order both in p and r o  . 

It follows from Equation 29 that for a given value of A the average radius of the periodic 
orbit around the earth in the presence of the moon is slightly less than that given by Equation 10, 
which is for the case of the absence of the moon. This fact may be easily understood because 
the overall long-range effect of the moon on a satellite that is revolving around the earth is to 
reduce the central attractive force of the earth on the satellite. The argument becomes physi- 
cally apparent if we imagine the moon and i ts  orbit to be replaced by an annular ring of the same 
mass as the moon, with this mass uniformly distributed. From this reasoning the presence of 
the sun may be expected to further reduce, by a small amount, the average value of the radius of 
the satellite's orbit. The prediction has been verified by actual calculations. 

The similarity between the present calculation and the perturbation theory in quantum 
mechanics is apparent. In neither case is the convergence of the series solution proven. But, it 
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will be shown in the following sections that the periodic orbits derived in this way agree perfectly 
with those obtained by the t r ia l  and e r r o r  method, just as the effectiveness of the perturbation 
method in quantum mechanics is based on its ability to predict empirical results.  

On the other hand, the present perturbation method differs in many ways from that inquantum 
mechanics. For example, the main purpose of the perturbation theory in quantum mechanics is 
to  find the new eigen value as a result  of perturbation, whereas here  we are interested in the 
variation in the orbital nature for a given value of A .  

Although the approach parallels Hill's determination of the variation orbit, differences do 
exist. In the f i rs t  place, Hill started with a set of differential equations already approximated by 
the neglecting of te rms  involving the ratio of the mean distance of the moon to that of the sun. The 
present investigation uses the equations in the restricted three-body problem. Secondly, Hill was 
concerned only in obtaining a particular solution but we a r e  interested in the general solution that 
involves four arbi t rary constants, A,, A 2 ,  B,, and B, , which determine, as shall be seen later, 
those nearly periodic orbits in the neighborhood of the exact periodic solution. Consequently, the 
present solution gives an entire family of orbits in the neighborhood of any periodic solution that 
we can determine. Needless to say, for orbits that depart greatly from the periodic one, the 
approximation employed in this analysis breaks down. Consequently, those orbits can no longer 
be represented by the equations derived. 

The differences between Hill's analysis and the present one clearly reflect divergent problems 
faced in different times. Indeed, the present solution of periodic and nearly periodic orbits 
around a more massive component, expanded in terms of the mass of the less  massive component, 
would have had little practical significance in Hill's time. 

NUMERICAL APPLICATIONS 

In a previous paper (Reference 6), by a numerical method (Reference 7) a synchronous orbit 
around the earth was derived, under the idealization of the restricted three-body problem with 
p = 0.012149. Now we a r e  able to derive it from Equations 23-26. 

In the xy coordinate system with the origin at the mass point 1 - p ,  the initial conditions of 
the synchronous orbit, derived by successive approximations, a r e  

1 xo = 0.10959080 , 

I yo = 0 ,  

xo = 0 ,  

$o = 2.8927303 , 
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Table 1 

~. 

k n  

4.249394 x 10  - 4  

-1.644862 x 

-6.901187 x 
- 

I n  

8.756117 x 

2.296898 x 

8.365787 x 
- . .- . 

which yield 

P = 0.23802754 (3 1) 

for the period. 

We can now calculate for this case the 
values of kn and l n  from Equations 17-22, with 

(3 2) 
- -  A =  - 26.396884 , 

which gives r o  = 0,10958800 from Equation 10. 
The computed values are listed in Table 1. Sub- 

stituting these values of k n  and 1 "  in the solution given by Equations 23-26 and transforming 
variables from r and 0 to x and y ,  in accordance with Equations 4 and 5, shows that the values 
X( t ) ,y( t ) , G( t ), and j r (  t ) derived from the present formulas agree to seven significant figures 
with those obtained from direct  integration under the initial conditions given by Equations 30. In 
particular, at t = 0 our formulas predict the initial conditions 

7 xo 0.10959080 , 

(33) 
G o  = 0 ,  

G o  = 2.8927300 , 

for the periodic orbit with P given by Equation 3 1. The agreement between Equations 30 and 33 
must be regarded as satisfactory. 

As would be expected, the prediction of periodic orbits by Equations 23 and 24 becomes less  
and less accurate as the period increases. A few cases are given in Table 2 to show the 

Table 2 

Initial Conditions Derived by the Series Solution Compared with those Obtained 
by the Method of Successive Approximation ( p  = 0.012149, y o  = Go = 0 ) .  

I r 

0.23802754 
0.39999890 
0.59999666 
0.79999290 
0.99999026 
1.1999940 
1.4000154 
1.6000716 

Series Solution 
I 

xO 

0.10959080 
0.15239388 
0.19580805 
0.23271671 
0.26506832 
0.29394940 
0.32005211 
0.34385494 

$0 

2.8927300 
2.3336373 
2.0503747 
1.8277779 
1.6657674 
1.5398118 
1.4376335 
1.3522620 

x O  

0.10959080 
0.15239410 
0.19580870 
0.23271790 
0.26506980 
0.29395020 
0.32005020 
0.3 43 846 80 

Successive Approximation 

YO 

2.8927303 
2.3936354 
2.0503734 
1.8277824 
1.6657871 
1.5398618 
1.4377350 
1.3524439 

Jacobian 
Constant 

9.6968861 
7.2832706 
5.9498741 
5.2292161 
4.7756998 
4.4638648 
4.2365564 
4.0638285 
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progressive worsening of the prediction. However, i t  should be noted that even a t  P = 1.6, the 
two se ts  of calculations - one from the numerical approach and the other from the present 
formulas - still give results that agree to the fourth significant figure. 

ORBITS IN T H E  NEIGHBORHOODS OF T H E  PERIODIC ONES 

It is obvious that for  orbits which a r e  not exactly periodic, the general solution given by 
Equations 23 and 24 together with Equations 15 and 16 should be applied instead of the particular 
integral given by Equations 23-26. Let us  now consider the behavior of these orbits when we 
make the initial values of x0 and jr, only slightly different from those corresponding to the periodic 
orbit, while maintaining y o  = Go = 0. 

The initial values of r ,  e ,  i , s' will be denoted by r i  , B i ,  i i ,  ii. Thus, by setting t = 0 in 
Equations 15 and 23 

By assuming B i  = 0 as usual, we have 

B, = - 2A, 

from Equations 16 and 24. We have assumed X o  = 0 which is equivalent to i i  = 0; hence 

A, = B, = 0 .  

Finally, it is easy to obtain 

(35) 

The initial values of r and s for the true periodic orbit will be denoted by and B i , p  . They 
a r e  given by 

From 

A r i  = r .  - r i -  
.P * 

As;, - s', - ii,p , 
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we derive 

We can now examine the behavior of orbits close to the periodic ones. The explicit expres- 
sion for e is, from Equations 16 and 24, 

Let us define time as t = t n  when e = 2nn,  and t = t n i l  when e 277 ( n  - I), where n is an integer. 
Therefore Pn, defined by 

is the period of the n t h  cycle of a nearly periodic orbit. It follows from Equation 44 that 

_I 

from which we note immediately that the mean period of the nearly periodic orbit is 

"0 
<'n> = Aro+/-LB1 . (47) 

So the f i r s t  term on the right-hand side of Equation 46 is associated with the mean period, but 
the r e s t  denotes small  oscillations of the pn value around its mean value for various values of n .  

Since the amplitudes of various oscillating terms in Equation 46 a r e  small, APn may be set  
equal to   TI in the argument of the sine function. All  terms involving 1 

approximation and Equation 46 can be reduced to: 
vanish as a result  of this 

4PA 1 71 
'n = <'n>' Aro + p B l  s i n  3; cos [(A + 1) t n  - ;] 
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where A, and B, a r e  given by Equations 42 and 43, respectively, and t n  may be considered 
to be 

t n  = n < p n > *  (49 1 

Since there is a periodic orbit for each value of A in the range of interest, we can compare a 
nearly periodic orbit with any periodic orbit in the former's  neighborhood. In our calculation we 
have fixed a single value of A for both the periodic and nearly periodic orbit in order to derive A, 

and B, from Equations 42 and 43. Obviously a slightly different choice of the value of A will give 
different values to these two constants for the same nearly periodic orbit. 

As a simple example the two orbits may be compared by starting with the same r i ,  i.e., 
A r i  = 0. Then A, and B, a r e  functions of n i i  alone and A i i  is related to the difference LA$, , 
between the initial value, $, , of thenearly 
periodic orbit and that of the exactly peri-  
odic orbit. If, furthermore, 

A 
n < < - ,  

2 0 A 4  (5 0) 

Equation 48 reduces to 

From Equation 51 values of pn have 
been computed up to n = 28 for two cases, 
with h given by Equation 32. The results 
a r e  given in the second and fourth columns 
of Table 3 .  In both cases  is of the 
order of several thousand. Therefore, the 
use of Equation 51 is justified. For com- 
p a r i s o n ~ ~  has also been computed by 
direct  integration. This was done bycom- 
puting successive times, tn ,  when the 
orbit crossed the positive axis. A four 
point interpolation has been used for 
obtaining t n  from the integrated tables. 
In this way, from the initial conditions 
corresponding respectively to two values 
of 9 ,  in Table 3, t n ,  and consequently Pn, 

11 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18  
19  
20 
21 
22 
23 
24 
25 
26 
27 
2f 

Table 3 

Time Intervals for Successive Cycles of Nearly 
Periodic Orbits ( p  = 0.012149, A = 26.396884).* 

~~ 

Time for 9 ,  = 2.8920000 
~ 

Equation 51* 

0.2378562 
0.2378557 
0.2378547 
0.2378534 
0.2378517 
0.2378497 
0.2378477 
0.2378456 
0.2378437 
0.2378419 
0.2378405 
0.2378394 
0.2378389 
0.2378388 
0.2378392 
0.2378400 
0.2378413 
0.2378429 
0.2378448 
0.2378469 
0.2378489 
0.2378509 
0.2378527 
0.2378542 
0.2378554 
0.2378560 
0.2378562 
0.2378559 

Direct 
[ntegration 

0.2378561 
0.2378556 
0.2378546 
0.2378533 
0.23785 16 
0.2378497 
0.2378476 
0.237 8456 
0.2378435 
0.2378420 
0.2378404 
0.2378394 
0.2378388 
0.2378388 
0.2378391 
0.2378399 
0.2378411 
0.2378428 
0.2378447 
0.2378467 
0.2378488 
0 2378506 
0.2378528 
0.2378540 
0.2378553 
0.2378558 
0.2378562 
0.237 8559 

Time for  $, = 2.8930000 

Equation 51* 

0.2380910 
0.2380912 
0.2380915 
0.2380920 
0.2380927 
0.2380934 
0.2380941 
0.2380949 
0.2380956 
0.2380963 
0.2380968 
0.2380972 
0.2380974 
0.2380974 
0.2380973 
0.2380970 
0.2380965 
0.2380959 
0.2380952 
0.2380944 
0.2380937 
0.2380929 
0.2380923 
0.2380917 
0.2380913 
0.2380910 
0.2380910 
0.2380911 

~~ ~ 

itial condition given Equatia 

Direct 
[ntegration 

0.2380909 
0.2380911 
0.2380915 
0.2380920 
0.2380926 
0.2380933 
0.2380941 
0.2380948 
0.2380956 
0.2380962 
0.2380967 
0.2380971 
0.2380973 
0.2380974 
0.2380973 
0.2380968 
0.2380965 
0.2380958 
0.2380951 
0.2380944 
0.2380937 
0.2380928 
0.2380923 
0.2380916 
0.2380912 
0.2380908 
0.2380911 
0.2380910 

$3 is consid- * In computing Adi the 
have been computed and the latter has ered to correspond to the exact periodic orbit used as the reference for 

been tabulated in the third and fifth comparison. 
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columns of Table 3 .  The agreement between the second and third columns as well as that 
between the fourth and fifth columns may be regarded as satisfactory. 

S O M E  R E M A R K S  O N  RELATED PROBLEMS 

Although the present calculation was performed in order to understand the general effect of 
the moon on the motion of the earth's satellites, it will serve equally well in understanding the 
general behavior of the motion of inner planets and asteroids as a result  of the perturbation by the 
major planets, especially Jupiter. Indeed, the smallness of p in such cases ( p  = 9.539 x 

the sun-Jupiter system) will make the result  derived with the f i r s t  order equations a good 
approximation to the problem. However, because of the relatively large sizes of the orbits of the 
inner planets, it may be necessary to include in the solution terms involving the third and perhaps 
higher powers of r,, . 

for 

The coefficients kn and l n  contain in their denominators a factor (nX)* - ( A  + I ) ~  where n is 
an integer. Thus if 

nX = A t 1  

the coefficients kn and 1 diverge. Therefore, periodic orbits cannot be obtained in this way. 

However, the Kirkwood gaps in the asteroid belt coincide with positions where asteroids, i f  
present, would have periods commeasurable with the period of Jupiter 's  orbit. Recently, this 
problem was investigated theoretically by Brouwer (Reference 8). 

The presence of the Kirkwood gaps is obviously due to the perturbation by Jupiter. Since 
perturbation increases with p ,  i t  follows that stronger gaps would be present in systems of two 
revolving bodies with increasing values of p.  Hence, we may immediately predict stronger gaps 
around the earth in the earth-moon system than those around the sun in the asteroid belt in the 
sun-Jupiter system. Such gaps around the earth can be computed easily from the condition of 
commeasurability of the moon's period and the period of any satellite in such a zone. Of course, 
a result  of this argument is that these zones should be avoided in launching satellites that a r e  
intended to stay in orbit for a long time. Being short, the period of the synchronous orbit is not 
near any strongly commeasurable gap. 

Another interesting consequence of the commeasurable gaps around the earth may be found 
in the distribution of dust particles in the earth-moon system. It is not now known whether dust 
particles all move a t  random or partially revolve around the earth. If the latter should be the 
case, the presence of zones around the earth void of dust particles like the Kirkwood gaps in the 
asteroid belt around the sun would be inevitable. Consequently, their detection may be an inter- 
esting subject of investigation in the field of space research. 
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